Abstract
It is shown in this paper that the topological phenomenon“zero in the continuous spectrum”, discovered by S.P. Novikov and M.A. Shubin, can be explained in terms of a homology theory on the category of finite polyhedra with values in a certain abelian category. This approach implies homotopy invariance of the Novikov-Shubin invariants. Its main advantage is that it allows the use of the standard homological techniques, such as spectral sequences, derived functors, universal coefficients etc., while studying the Novikov-Shubin invariants. It also leads to some new quantitative invariants, measuring the Novikov-Shubin phenomenon in a different way, which are used in the present paper in order to strengthen the Morse type inequalities of Novikov and Shubin [NSh2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.