Abstract
Organoboranes and boronic esters readily undergo nucleophilic addition, and if the nucleophile also bears an alpha-leaving group, 1,2-metallate rearrangement of the ate complex results. Through such a process a carbon chain can be extended, usually with high stereocontrol and this is the focus of this review. A chiral boronic ester (substrate control) can be used for stereocontrolled homologations with (dichloromethyl)lithium in the presence of ZnCl(2). Subsequent alkylation by an organometallic reagent also occurs with high levels of stereocontrol. Chiral lithiated carbanions (reagent control) can also be used for the reaction sequence with achiral boronic esters and boranes. Aryl-stabilized sulfur ylide derived chiral carbanions can be homologated with a range of boranes including vinyl boranes in good yield and high diastereo- and enantioselectivity. Lithiated alkyl chlorides react with boronic esters, again with high stereocontrol, but both sets of reactions are limited in scope. Chiral lithiated carbamates show the greatest substrate scope and react with both boronic esters and boranes with excellent enantioselectivity. Furthermore, iterative homologation with chiral lithiated carbamates allows carbon chains to be "grown" with control over relative and absolute stereochemistry. The factors responsible for stereocontrol are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.