Abstract

Reaction of hydrated Zn[NO3]2 or Zn[BF4]2 with four or more equivalents of 3{5}-tert-butylpyrazole (L(tBu)) yields [Zn(L(tBu))4]X2 (X- = NO3- or BF4-). The nitrate complex contains C2-symmetric four-coordinate zinc(II) centers with a slightly flattened tetrahedral geometry, and each nitrate anion hydrogen bonds to two pyrazole N-H groups. Similar reactions with Zn[ClO4]2 or ZnCl2 in the presence of 2 equiv of AgPF6 or AgSbF6 yield instead [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 and [{Zn(L(tBu))4}(L(tBu))2]Y2 (Y- = PF6- or SbF6-). Crystals of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 are composed of discrete [{Zn(L(tBu))4}(L(tBu))4]2+ supramolecules that are formed from N-H...N hydrogen bonding between zinc-bound and uncoordinated pyrazole rings. The [{Zn(L(tBu))4}(L(tBu))4]2+ moieties are linked into planar 4(4) nets by hydrogen bonding to bridging ClO4- anions. The ClO4- ions are almost perfectly encapsulated in near-spherical cavities of approximate dimensions 5.0 x 5.0 x 4.5 A that are formed by two interlocked supramolecular dications. Similarly, [{Zn(L(tBu))4}(L(tBu))2][PF6]2 crystallizes as discrete supramolecules in the crystal with the PF6- anions occupying a shallow bowl-shaped cavity on the surface of the complex that is formed by two zinc-bound and one uncoordinated pyrazole ligands. (1)H NMR and IR studies of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 in CD2Cl2 imply that the second-sphere L(tBu) ligands dissociate from the [Zn(L(tBu))4]2+ center in this solvent and that free and metal-bound L(tBu) are in rapid chemical exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call