Abstract

Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe2)3}3 (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI3THFn and 3 equiv of KC(SiHMe2)3. X-ray diffraction studies reveal 1a-d are isostructural, pseudo-C3-symmetric molecules that contain two secondary Ln↼HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe2)3}3 and DFT calculations. The Ln↼HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activation parameters for the exchange process in 1a (ΔH⧧ = 8.2(4) kcal·mol-1; ΔS⧧ = -1(2) cal·mol-1K-1) and 1a-d9 (ΔH⧧ = 7.7(3) kcal·mol-1; ΔS⧧ = -4(2) cal·mol-1K-1). Comparisons of lineshapes, rate constants (kH/kD), and slopes of ln(k/T) vs 1/T plots for 1a and 1a-d9 reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five β-Si-H⇀Ln and one γ-C-H⇀Ln. The calculations also suggest the pathway for Ln↼HSi/SiH exchange involves rotation of a single C(SiHMe2)3 ligand that is coordinated to the Ln center through the Ln-C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 °C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe2)3}3 and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(OxMe2)2) give {MeC(OxMe2)2}Ln{C(SiHMe2)3}2, and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.