Abstract

Image interpolation has a wide range of applications such as frame rate-up conversion and free viewpoint TV. Despite significant progresses, it remains an open challenge especially for image pairs with large displacements. In this paper, we first propose a novel optimization algorithm for motion estimation, which combines the advantages of both global optimization and a local parametric transformation model. We perform optimization over dynamic label sets, which are modified after each iteration using the prior of piecewise consistency to avoid local minima. Then we apply it to an image interpolation framework including occlusion handling and intermediate image interpolation. We validate the performance of our algorithm experimentally, and show that our approach achieves state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.