Abstract

AbstractWe undertake a rigorous derivation of the Biot's law for a porous elastic solid containing an inviscid fluid. We consider small displacements of a linear elastic solid being itself a connected periodic skeleton containing a pore structure of the characteristic size ε. It is completely saturated by an incompressible inviscid fluid. The model is described by the equations of the linear elasticity coupled with the linearized incompressible Euler system. We study the homogenization limit when the pore size εtends to zero. The main difficulty is obtaining an a priori estimate for the gradient of the fluid velocity in the pore structure. Under the assumption that the solid part is connected and using results on the first order elliptic systems, we obtain the required estimate. It allows us to apply appropriate results from the 2‐scale convergence. Then it is proved that the microscopic displacements and the fluid pressure converge in 2‐scales towards a linear hyperbolic system for an effective displacement and an effective pressure field.Using correctors, we also give a strong convergence result. The obtained system is then compared with the Biot's law. It is found that there is a constitutive relation linking the effective pressure with the divergences of the effective fluid and solid displacements. Then we prove that the homogenized model coincides with the Biot's equations but with the added mass ρa being a matrix, which is calculated through an auxiliary problem in the periodic cell for the tortuosity. Furthermore, we get formulas for the matricial coefficients in the Biot's effective stress–strain relations.Finally, we consider the degenerate case when the fluid part is not connected and obtain Biot's model with the relative fluid displacement equal to zero. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call