Abstract

The use of phantoms comprising diluted tissue homogenates with a buried capillary containing quantum dots is demonstrated as a method to investigate the optical and biophysical factors influencing the imaging of subsurface fluorescence contrast agents. Validation of the method is demonstrated using both liquid phantoms of known optical absorption and reduced scattering and Monte Carlo computer simulations of photon transport. Conclusions regarding the optimal excitation wavelength are given and quantified with respect to the tissue optical properties. The tissue homogenate method should be of value for quantitative optimization studies relevant to, for example, endoscopic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.