Abstract
The Ethiopian rift which is part of East African Rift system passes through the middle of the country making it one of the most seismically active regions in the world. Thus, significant and damaging earthquakes have been reported and recorded in the past in this region. A homogeneous earthquake catalog is of basic importance for studying the earthquake occurrence pattern in space and time and for many engineering applications including assessment of seismic hazard, estimation of peak ground accelerations and determination of long-term seismic strain rates.The first earthquake catalogue for Ethiopia was prepared by Pierre Gouin and later, different authors attempted to compile a catalogue using different time period intervals and different earthquake magnitude scales. The b-value mapping and its implication never done for Ethiopia and its environs. The main purpose of the study is therefore first compile and homogenize earthquake catalog of Ethiopia including Read Sea and Gulf of Aden regions into Moment magnitude Mw scale through completeness analysis in time and magnitudes. Secondly, mapping b-values for different Seismgenic regions and understand its implications for magma induced Seismicity in the regions.During the present study, a new homogenized earthquake catalog in moment magnitude scale (Mw), covering about 3814 events is prepared for Ethiopia including Red sea and Gulf of Aden regions. The present study area is bounded within Latitude (40N − 200)N and Longitude (340N − 480)N E and have a magnitude range of Mw (3.0–7.1) with a total coverage period of 56 years (1960 to 2016). The catalog has been analyzed for magnitude completeness (Mc) using Gutenberg’s Frequency Magnitude Distribution law and it is found to be complete respectively for Mc ≥ 4.6 ± 0.03, Mc ≥ 4.6 ± 0.03, Mc ≥ 3.2, Mc ≥ 3.1 and Mc ≥ 5.1 for Afar including red sea and Gulf of Aden, Afar rift and Dabbahu Volcano, Northern, Central, and Southern Main Ethiopian Rifts. Further, the corresponding average b-value of the regions Afar including Red Sea and Gulf of Aden, Afar and Dabbahu Volcano separately, Northern Main Ethiopian Rift, Central Main Ethiopian Rift and Southern Main Ethiopian Rift respectively are estimated to be 1.17 ± 0.05, 1.15 ± 0.05, 0.843, 0.826 and 1.03 with respective period of completeness from 2003 to 2014, 2005 to 2014, 2001 to 2003, 2001 to 2003 and 1960 to 2016 for the regions. Later, mapping of the b-values in the Gutenberg-Richter relation from the newly developed catalog was performed by binning the regions into minimum of 0.050x0.050 for Afar and Dabbahu region, 0.10x0.10 for Main Ethiopian rifts and 0.20x0.20 for the other regions. Thus, the b-value characteristics of various seismogenic zones within the area have been discussed. Hence, in this study, we clearly observed that magma chamber movement including mapping of volcanic centers and magmatic segments are mapped using b-values.
Highlights
The Ethiopian rift System which is part of East African Rift system passes through the middle of the country making it one of the most seismically active regions in the world
Homogenized earthquake catalog of Ethiopia and its environs (1960–2016) The empirical magnitude conversion equations for mb vs Mw presented in this study (see equations (6, 7)) are compared with the previously developed magnitude conversion equations (1, 2, 3, 4) respectively by different authors (Scordilis, 2006; Akkar et al, 2010; Das and Sharma, 2011; Karimiparidari et al, 2013)
It should be noted that the ML and MD estimates generally depend on the information disseminated by local seismic agencies
Summary
The Ethiopian rift System which is part of East African Rift system passes through the middle of the country making it one of the most seismically active regions in the world. The 1906 Langano earthquake with magnitude 6.8 (mb), the 1961 Kara Kore earthquake magnitude 6.4(mb) which caused damage to manmade structures (destroyed the town of Majete) and alterations in the landscape, and the 1969 Serdo earthquake magnitude 6.5(mb) are significant ones (Kebede 1996). Studies indicated that the result of geodynamic and geomorphic processes shaped Ethiopian territory since the Oligocene (Abbate et al 2015). These processes were activated by the impingement of plumes under the Afro- Arabian continental crust. The plume action contributed the rise to extrusion of huge amounts of magma, uplift, and fragmentation of the continental crust and contributed to the birth of the Red Sea, Gulf of Aden, East Africa Rift valley, and the adjoining Afar depression
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.