Abstract
We consider periodic homogenization problems for Lévy operators with asymmetric Lévy densities. The formal asymptotic expansion used for the α-stable (symmetric) Lévy operators (α ∈ (0, 2)) is not directly applicable to such asymmetric cases. We rescale the asymmetric densities and extract the most singular parts of the measures, which average out the microscopic dependencies in the homogenization procedures. We give two conditions, (A) and (B), that characterize such a class of asymmetric densities under which the above ‘rescaled’ homogenization is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.