Abstract

This paper proposes a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains. In addition, it provides an application for magnetorheological elastomers via a “partial decoupling” approximation splitting the magnetoelastic energy into a purely mechanical component, together with a magnetostatic component evaluated in the deformed configuration of the composite, as estimated by means of the purely mechanical solution of the problem. It is argued that the resulting constitutive model for the material, which can account for the initial volume fraction, average shape, orientation and distribution of the magnetically anisotropic, non-spherical particles, should be quite accurate at least for perfectly aligned magnetic and mechanical loadings. The theory predicts the existence of certain “extra” stresses—arising in the composite beyond the purely mechanical and magnetic (Maxwell) stresses—which can be directly linked to deformation-induced changes in the microstructure. For the special case of isotropic distributions of magnetically isotropic, spherical particles, the extra stresses are due to changes in the particle two-point distribution function with the deformation, and are of order volume fraction squared, while the corresponding extra stresses for the case of aligned, ellipsoidal particles can be of order volume fraction, when changes are induced by the deformation in the orientation of the particles. The theory is capable of handling the strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call