Abstract

We present a systematic study of homogenization of diffusion in random media with emphasis on tile-based random microstructures. We give detailed examples of several such media starting from their physical descriptions, then construct the associated probability spaces and verify their ergodicity. After a discussion of material symmetries of random media, we derive criteria for the isotropy of the homogenized limits in tile-based structures. Furthermore, we study the periodization algorithm for the numerical approximation of the homogenized diffusion tensor and study the algorithm's rate of convergence. For one dimensional tile-based media, we prove a central limit result, giving a concrete rate of convergence for periodization. We also provide numerical evidence for a similar central limit behavior in the case of two dimensional tile-based structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.