Abstract
We consider a parabolic Signorini boundary-value problem in a thick junction $\Omega_{\varepsilon}$ which is the union of a domain $\Omega_0$ and a large number of $\varepsilon$-periodically situated thin cylinders. The Signorini conditions are given on the lateral surfaces of the cylinders. The asymptotic analysis of this problem is done as $\varepsilon\to0,$ i.e., when the number of the thin cylinders infinitely increases and their thickness tends to zero. With the help of the integral identity method we prove a convergence theorem and show that the Signorini conditions are transformed (as $\varepsilon\to0)$ in differential inequalities in the region that is filled up by the thin cylinders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.