Abstract

Denoting by \(\sigma\) the stress tensor, by \(\varepsilon\) the linearized strain tensor, by A the elasticity tensor, and assuming that \(\varphi\) is a convex potential, the inclusion \(\partial \varepsilon / \partial t \in \partial \varphi(\sigma - A : \varepsilon)\) accounts for nonlinear viscoelasticity, and encompasses both the linear Kelvin–Voigt model of solid-type viscoelasticity and the Prager model of rigid plasticity with linear kinematic strain-hardening. This relation is assumed to represent the constitutive behavior of a space-distributed system, and is here coupled with the dynamical equation. An initial- and boundary-value problem is formulated, and the existence and uniqueness of the solution are proved via classical techniques based on compactness and monotonicity. A composite material is then considered, in which the function \(\varphi\) and the tensor A rapidly oscillate in space. A two-scale model is derived via Nguetseng’s notion of two-scale convergence. This provides a detailed account of the mesoscopic state of the system. Any dependence on the fine-scale variable is then eliminated, and the existence of a solution of a new single-scale macroscopic model is proved. The final outcome is at variance with the nonlinear extension of the generalized Kelvin–Voigt model, which is based on an apparently unjustified mean-field-type hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.