Abstract

We study the Landau-Lifshitz-Gilbert equation in a composite ferromagnetic medium made of two different materials with highly contrasted properties. Over the so-called matrix domain, the effective field, the demagnetizing field and the bulk anisotropy field are scaled with regard to a parameter $e$ representing the size of the matrix blocks. This scaling preserves the physics of the magnetization as $e$ tends to zero. Using homogenization theory, we derive the corresponding effective model. To this aim we use the concept of two-scale convergence together with a new homogenization procedure for handling with the nonlinear terms. More precisely, an appropriate dilation operator is applied in a embedded cells network, the network being constrained by the microscopic geometry. We prove that the less magnetic part of the medium contributes through additional memory terms in the effective field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.