Abstract
The paper deals with the homogenization of stiff heterogeneous plates. Assuming that the coefficients are equi-bounded in L 1, we prove that the limit of a sequence of plate equations remains a plate equation which involves a strongly local linear operator acting on the second gradients. This compactness result is based on a div-curl lemma for fourth-order equations. On the other hand, using an intermediate stream function we deduce from the plates case a similar result for high-viscosity Stokes equations in dimension two, so that the nature of the Stokes equation is preserved in the homogenization process. Finally, we show that the L 1-boundedness assumption cannot be relaxed. Indeed, in the case of the Stokes equation the concentration of one very rigid strip on a line induces the appearance of second gradient terms in the limit problem, which violates the compactness result obtained under the L 1-boundedness condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.