Abstract
We study the singularly perturbed problem —εαΔuε + uε = f (α > 0) with the Dirichlet boundary condition in a perforated domain, in which the holes are distributed periodically with period 2ε throughout a fixed domain Ω. The asymptotic behaviour of uε when ε → 0, together with corrector results and error estimates in L2(Ω), are deduced for all sizes of holes. The behaviour of uε in is obtained for the cases where the size of holes is of order ε or is of a sufficiently smaller order. When the holes' size is of a sufficiently small order, as expected, uε has similar behaviour to that in the case of a non-varying domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.