Abstract

We study the “periodic homogenization” for a class of nonlocal partial differential equations of parabolic-type with rapidly oscillating coefficients, related to stochastic differential equations driven by multiplicative isotropic α-stable Lévy noise (1<α<2) which is nonlinear in the noise component. Our homogenization method is probabilistic. It turns out that, under suitable regularity assumptions, the limit of the solutions satisfies a nonlocal partial differential equation with constant coefficients, which are associated to a symmetric α-stable Lévy process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.