Abstract
This paper deals with the homogenization of a sequence of non-linear conductivity energies in a bounded open set $\Omega \mbox{ of } {\Bbb R}^d, \mbox{ for } d\geq 3.$ The energy density is of the same order as $a_\varepsilon({x/\varepsilon})\,|Du(x)|^p,$ where $\varepsilon\to 0, a_\varepsilon$ is periodic, u is a vector-valued function in $W^{1,p}(\Omega;{\Bbb R}^m)$ and $p>1.$ The conductivity $a_\varepsilon$ is equal to 1 in the "hard" phases composed by $N\geq 2$ two by two disjoint-closure periodic sets while $a_\varepsilon$ tends uniformly to 0 in the "soft" phases composed by periodic thin layers which separate the hard phases. We prove that the limit energy, according to γ-convergence, is a multi-phase functional equal to the sum of the homogenized energies (of order 1) induced by the hard phases plus an interaction energy (of order 0) due to the soft phases. The number of limit phases is less than or equal to N and is obtained by evaluating the γ-limit of the rescaled energy of density $\varepsilon^{-p}\,a_\varepsilon(y)\,|Dv(y)|^p$ in the torus. Therefore, the homogenization result is achieved by a double γ-convergence procedure since the cell problem depends on e.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Mathematics and Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.