Abstract
Abstract We use the theory of selfdual Lagrangians to give a variational approach to the homogenization of equations in divergence form, that are driven by a periodic family of maximal monotone vector fields. The approach has the advantage of using Γ-convergence methods for corresponding functionals just as in the classical case of convex potentials, as opposed to the graph convergence methods used in the absence of potentials. A new variational formulation for the homogenized equation is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.