Abstract
Large-scale electrical and thermal currents in ordinary metals are well approximated by effective medium theory: global transport properties are governed by the solution to homogenized coupled diffusion equations. In some metals, including the Dirac fluid of nearly charge neutral graphene, microscopic transport is not governed by diffusion, but by a more complicated set of linearized hydrodynamic equations, which form a system of degenerate elliptic equations coupled with the Stokes equation for fluid velocity. In sufficiently inhomogeneous media, these hydrodynamic equations reduce to homogenized diffusion equations. We re-cast the hydrodynamic transport equations as the infimum of a functional over conserved currents, and present a functional framework to model and compute the homogenized diffusion tensor relating electrical and thermal currents to charge and temperature gradients. We generalize to this system two well-known results in homogenization theory: Tartar's proof of local convergence to the homogenized theory in periodic and highly oscillatory media, and sub-additivity of the above functional in random media with highly oscillatory, stationary and ergodic coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.