Abstract
The present paper aims mainly to estimate the size-dependent effective properties of fibrous piezoelectric composites with general imperfect interfaces. The interface model used states that the displacement, traction, electric potential, and normal electric displacement all suffer jumps across an interface. In addition, it can degenerate into the well-known special ones by employing appropriate high-contrast interfacial parameters. To achieve our objective, an auxiliary inhomogeneity problem of a circular fiber embedded in an infinite cylindrical reference phase via general imperfect interface under anti-plane mechanical and in-plane electrical boundary conditions is analytically solved. This solution allows us to apply the well-known micromechanical schemes such as the dilute, Mori–Tanaka to obtain the closed-form expressions for the size-dependent overall properties of composites under consideration. Some numerical examples are provided for illustrating the features of the obtained general results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.