Abstract

Epsilon Near Zero (ENZ) metamaterials are interest for a broad range of applications in optoelectronics, communication and photovoltaic. Composite metal-dielectric metamaterials can be designed to exhibit ENZ in a specific frequency range. However, the frequency range if the ENZ is oftentimes limited. Recently, we developed a few different routs to designs metal-dielectric metamaterials with a broadband ENZ in the visible and infrared frequency domain. In this talk, I will present a homogenization theory for 1D and 2D metamaterials based on a few different geometries of metal-dielectric composites. Our approach is conceptually simple, elegant, and technically feasible, while its underlying physics is clear. We use a homogenization technique to estimate the real part of the effective permittivity nulling for a few different geometries of metal-dielectric composites. The design of broadband epsilon-near-zero metamaterials have been demonstrated through the solution of an inverse problem. Furthermore, we consider a few different geometries for realization of a broadband ENZ, such as core-shell spherical nanoparticle and nano-cylinders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.