Abstract

This paper introduces a novel micromechanics method for strength homogenization of cohesive-frictional porous composites. Within a yield design formulation, the inherently nonlinear homogenization problem associated with strength upscaling is treated by the linear comparison composite (LCC) theory, which resolves the strength properties of the heterogeneous medium by estimating the effective properties of a suitable linear comparison composite with similar underlying microstructure. The LCC homogenization method rationalizes the development of strength criteria for cohesive-frictional materials affected by the presence of porosity and rigidlike inclusions. Modeling results for benchmark microstructures improve existing micromechanics formulations by allowing the consideration of the complete range of frictional behaviors for the Drucker-Prager solid and by lifting the restriction on the incompressibility of the solid for the estimation of morphology factors that describe the mechanical interaction between...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.