Abstract
In this paper homogenization of a mathematical model for biomechanics of a plant tissue with randomly distributed cells is considered. Mechanical properties of a plant tissue are modelled by a strongly coupled system of reaction-diffusion-convection equations for chemical processes in plant cells and cell walls, the equations of poroelasticity for elastic deformations of plant cell walls and middle lamella, and the Stokes equations for fluid flow inside the cells. The nonlinear coupling between the mechanics and chemistry is given by the dependence of elastic properties of plant tissue on densities of chemical substances as well as by the dependence of chemical reactions on mechanical stresses present in a tissue. Using techniques of stochastic homogenization we derive rigorously macroscopic model for plant tissue biomechanics with random distribution of cells. Strong stochastic two-scale convergence is shown to pass to the limit in the non-linear reaction terms. Appropriate meaning of the boundary terms is introduced to define the macroscopic equations with flux boundary conditions and transmission conditions on the microscopic scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.