Abstract
The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin–Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding methods) we derive macroscopic equations from the microscopic model for cell wall biomechanics consisting of strongly coupled equations of linear viscoelasticity and a system of reaction-diffusion and ordinary differential equations. As is typical for microscopic viscoelastic problems, the macroscopic equations governing the viscoelastic deformations of plant cell walls contain memory terms. The derivation of the macroscopic problem for the degenerate viscoelastic equations is conducted using a perturbation argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.