Abstract
Homogenization of a stochastic nonlinear reaction–diffusion equation with a large nonlinear term is considered. Under a general Besicovitch almost periodicity assumption on the coefficients of the equation we prove that the sequence of solutions of the said problem converges in probability towards the solution of a rather different type of equation, namely, the stochastic nonlinear convection–diffusion equation which we explicitly derive in terms of appropriate functionals. We study some particular cases such as the periodic framework, and many others. This is achieved under a suitable generalized concept of Σ-convergence for stochastic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.