Abstract
ABSTRACT Based on a recent model for vibration of an elastic helix [6], a thermoelastic heterogeneous helix is studied by the asymptotic homogenization method. The objective of the study is the determination of the averaged equation of motion and of the effective coefficients of a one-dimensional micro-periodic thermoelastic helix. The results are valid in the case of waves much longer than the length of the periodic unit cell, and for any finite number of phases for within that cell. Also perfect contact conditions between phases are considered. Generally, the constitutive coefficients are harmonic averages, while the mass density and polar moment of inertia are arithmetic averages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.