Abstract

We study the asymptotic behaviour of solutions to a quasilinear equation with high-contrast coefficients. The energy formulation of the problem leads to work with variable exponent Lebesgue spaces Lpε (·) in a domain Ω with a complex microstructure depending on a small parameter ε. Assuming only that the functions pε converge uniformly to a limit function p0 and that p0 satisfy certain logarithmic uniform continuity conditions, we rigorously derive the corresponding homogenized problem which is completely described in terms of local energy characteristics of the original domain. In the framework of our method we do not have to specify the geometrical structure Ω. We illustrate our result with periodical examples, extending, in particular, the classical extension results to variable exponent Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.