Abstract

In the framework of the linearized shallow water equations, the homogenization method for wave type equations with rapidly oscillating coefficients that generally cannot be represented as periodic functions of the fast variables is applied to the Cauchy problem for the wave equation describing the evolution of the free surface elevation for long waves propagating in a basin over an uneven bottom. Under certain conditions on the function describing the basin depth, we prove that the solution of the homogenized equation asymptotically approximates the solution of the original equation. Model homogenized wave equations are constructed for several examples of one-dimensional sections of the real ocean bottom profile, and their numerical and asymptotic solutions are compared with numerical solutions of the original equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.