Abstract

The question of the description of the elastic fields of dislocations and of the plastic strains generated by their motion is central to the connection between dislocation-based and continuum approaches of plasticity. In the present work, the homogenization of the elementary shears produced by dislocations is discussed within the frame of a discrete-continuum numerical model. In the latter, a dislocation dynamics simulation is substituted for the constitutive form traditionally used in finite element calculations. As an illustrative example of the discrete-continuum model, the stress field of single dislocations is obtained as a solution of the boundary value problem. The hybrid code is also shown to account for size effects originating from line tension effects and from stress concentrations at the tip of dislocation pile-ups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.