Abstract

AbstractWe study the homogenization of the quasistatic initial boundary value problem with internal variables which models the deformation behavior of viscoplastic bodies with a periodic microstructure. This problem is represented through a system of linear partial differential equations coupled with a nonlinear system of differential equations or inclusions. Recently it was shown by Alber [2] that the formally derived homogenized initial boundary value problem has a solution. From this solution we construct an asymptotic solution for the original problem and prove that the difference of the exact solution and the asymptotic solution tends to zero if the lengthscale of the microstructure goes to zero. The work is based on monotonicity properties of the differential equations or inclusions. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.