Abstract

Comprehensive understanding of the mechanism of two-phase flow agitation is essential to control the mixing performance in chemical processes. The aim of the present study is to understand mixing behavior of two phase flow emulsification process in details by utilizing a three-dimensional computational fluid dynamics (CFD) scheme and predicting the flow characteristics of O/W emulsion in a Kenics static mixer (KSM) operating as an in line continuous homogenizer. The overall study is carried out in three steps: (a) a turbulent flow analysis, to obtain an overall characteristic of the emulsion resulting in CFD model and (b) comparing theoretical data of model with those of experimental studies in order to validate the CFD approach; (c) a droplet tracking step, to extensively study the distribution of marked droplets during the mixing procedure. To achieve this goal, the individual droplets being numerically labeled and visually colored regarding their droplet size; a quantitatively scrutiny of mixing for the droplet distribution was introduced. As a result, the droplet tracking using CFD has successfully evaluated the mixing performance and is proposed as a practical numerical scheme for predicting the KSM behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call