Abstract
Abstract We study the long-time dynamics of 2D linear Fokker–Planck equations driven by a drift that can be decomposed in the sum of a large shear component and the gradient of a regular potential depending on one spatial variable. The problem can be interpreted as that of a passive scalar advected by a slightly compressible shear flow, and undergoing small diffusion. For the corresponding stochastic differential equation, we give explicit homogenization rates in terms of a family of time-scales depending on the parameter measuring the strength of the incompressible perturbation. This is achieved by exploiting an auxiliary Poisson problem, and by computing the related effective diffusion coefficients. Regarding the long-time behavior of the solution of the Fokker–Planck equation, we provide explicit decay rates to the unique invariant measure by employing a quantitative version of the classical hypocoercivity scheme. From a fluid mechanics perspective, this turns out to be equivalent to quantifying the phenomenon of enhanced diffusion for slightly compressible shear flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.