Abstract

Oncology detection technology is significant for the early detection of tumors. The current study reports a new method that uses folate receptor (FR) as circulating tumor cells (CTCs) marker and only folate modified T30 as a probe. This method also uses dual-enzyme assisted amplification strategy for homogeneous fluorescence as well as two-dimensional visual (color and distance) detection of SMMC-7721 liver cancer cells from clinical blood samples. This work was based on the steric hindrance caused by binding between FR and folate to regulate cleavage of folate-T30 by exonuclease I (Exo I) and to inhibit subsequent polymerization and extension reaction of the cleavage product by terminal deoxynucleotidyl transferase (TdT). It explores the use of CdTe QDs to selectively identify Cu2+ and polyT-template Cu NPs as a bridge combined with inkjet printing technology to make test strips that can be read through distance changes. Under fluorometer mode, limit of detection as low as 1 cells/mL was achieved. The color and distance reading modes can identify cells with concentrations as low as 5 and 1 cells/mL, respectively. This CTCs detection approach of fluorescence mode was further validated by using 50 clinical samples of liver cancer patients (19 negative and 31 positive). The results were in good agreement with FR-polymerase chain reaction (FR-PCR) kits, radiologic and pathological techniques. In addition, the quantitative results of distance reading test strips of CTCs in 22 clinical samples (8 negative and 14 positive) were also in 100% agreement with the findings of clinical kits, computed tomography (CT) and pathological tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.