Abstract
By studying the theory of rational curves, we introduce a notion of rational simple connectedness for projective homogeneous spaces. As an application, we prove that over a function field of an algebraic surface over an algebraically closed field, a variety whose geometric generic fiber is a projective homogeneous space admits a rational point if and only if the elementary obstruction vanishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Institute of Mathematics of Jussieu
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.