Abstract

As applied to the ducts of aircraft engines, a new method is studied for extending the frequency range of sound absorption by using special homogeneous materials of a rigid structure. A through- or blind-hole perforation of such a homogeneous material is for the first time suggested with a view to substantially extend its capabilities. A theory is developed for sound-absorbing structures of perforated homogeneous material that allows for computing their wave parameters and impedance on the basis of those of the starting material. Based on this theory, one can calculate the impedance of any, no matter how complex a structure built up of several layers differing in thickness and perforation percentage and diameter. The results of calculations made for the impedance and sound absorption coefficient of single and multiple layer samples show good agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call