Abstract

The homogeneous reverse atom transfer radical polymerization (reverse ATRP) of glycidyl methacrylate (GMA) was carried out in bulk, using 2,2′-azobisisobutyronitrile (AIBN) as the initiator and N, N- n-butyldithiocarbamate copper (Cu(SC(S)N(C 4H 9) 2) 2) as the catalyst. The polymerization showed typical controlled/‘living’ polymerization behavior, i.e. first-order kinetics, well-controlled molecular weight ( M n) and narrow molecular weight distribution ( M w/ M n). 1H NMR and IR spectra showed that the pendant epoxy groups in PGMA polymer remained intact throughout the polymerization of GMA. A phosphorated PGMA (PPGMA) polymer was obtained by phosphonation reaction of the pendant epoxy groups in PGMA with diphenylphosphinic chloride (DPPC). Thermal behavior of the PPGMA was studied by TG and DTG. A major DTG peak at 340 °C was observed for the PPGMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.