Abstract

We consider the stability of spatially homogeneous plane-wave spacetimes. We carry out a full analysis for plane-wave spacetimes in (4 + 1) dimensions, and find there are two cases to consider, which we call non-exceptional and exceptional. In the non-exceptional case the plane waves are stable to (spatially homogeneous) vacuum perturbations as well as a restricted set of matter perturbations. In the exceptional case we always find an instability. Also we consider the Milne universe in arbitrary dimensions and find it is also stable provided the strong energy condition is satisfied. This implies that there exists an open set of stable plane-wave solutions in arbitrary dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.