Abstract

The aim of our paper is twofold. First, we thoroughly study the sets of meager and hypermeager elements. Second, we study a common generalization of orthocomplete and lattice effect algebras. We show that every block of an Archimedean homogeneous effect algebra satisfying this generalization is lattice ordered. Hence such effect algebras can be covered by ranges of observables. As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is lattice ordered. Therefore finite homogeneous effect algebras are covered by MV-algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.