Abstract
Particle nucleation and growth are simulated for iron vapor in a thermal plasma reactor with an assumed one-dimensional flow field and decoupled chemistry and aerosol dynamics. Including both evaporation and coagulation terms in the set of cluster-balance rate equations, a sharply defined homogeneous nucleation event is calculated. Following nucleation the vapor phase is rapidly depleted by condensation, and thereafter particle growth occurs purely by Browntan coagulation. The size and number of nucleated particles are found to be affected strongly by the cooling rate and by the initial monomer concentration. An explanation is presented in terms of the response time of the aerosol to changing thermodynamic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.