Abstract

We have measured the nucleation conditions of n-propanol, n-butanol, and n-pentanol in a supersonic Laval nozzle, and estimated that the maximum nucleation rate J is 5 x 10(16) cm(-3) s(-1) with an uncertainty factor of 2. Plotting the vapor pressures p(J(max) ) and temperatures T(J(max) ) corresponding to the maximum nucleation rate as ln(p) versus 1T, produces a series of well separated straight lines. When these values are scaled by their respective critical parameters, p(c) and T(c), the data lie close to a single straight line. Comparing the experimental data to the predictions of classical nucleation theory reveals much higher experimental rates, and the deviation increases with increasing alcohol chain length and decreasing temperature. A scaling analysis in terms of Hale's scaled nucleation model [Phys. Rev. A 33, 4156 (1986); Metall. Trans. A 23, 1863 (1992)], clearly shows that our data are consistent with experimental nucleation rates measured using other devices that have characteristic rates many orders of magnitude lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.