Abstract

In this work, we investigate whether a multilayered planet can be approximated as a homogeneous planet, and in particular how well the dissipation rate of a multilayered planet can be reproduced with a homogeneous rheology. We study the case of a stratified body with an icy crust that, according to recent studies, displays a double peak feature in the tidal response that cannot be reproduced with a homogeneous planet with an Andrade rheology. We revisit the problem with a slightly more complex rheology for the homogeneous body, the Sundberg–Cooper rheology, which naturally has a double peak feature, and apply the model to the TRAPPIST-1e planet. Our results compare very well with the results obtained when employing a multilayered model, showing that it is possible to approximate the behavior of a multilayer icy planet with a homogeneous planet using the Sundberg–Cooper rheology. This highlights the fact that we do not need the complexity of the multilayer planet model in order to estimate the tidal dissipation of an icy planet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call