Abstract

Lithium intercalation has become a versatile tool for realizing emergent quantum phenomena in two-dimensional (2D) materials. However, the insertion of lithium ions may be accompanied by the creation of wrinkles and cracks, which prevents the material from manifesting its intrinsic properties under substantial charge injection. By using the recently developed ion backgating technique, we successfully realize lateral intercalation in 1T-TiSe2 and 2H-NbSe2, which shows substantially improved sample homogeneity. The homogeneity at high lithium doping is not only demonstrated via low-temperature transport measurements but also directly visualized by topographical imaging through in situ atomic force microscopy (AFM). The application of lateral intercalation to a broad spectrum of 2D materials can greatly facilitate the search for exotic quantum phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.