Abstract

Recently, a new class of scalar constraint operators has been introduced in loop quantum gravity. They are defined on a space of solutions to the Gauss constraint and partial solutions to the vector constraint, called a vertex Hilbert space. We propose a subspace of the vertex Hilbert space formed by homogeneous-isotropic states, which is invariant under the action of the new scalar constraint operators. As a result, the operators can be reduced to our homogeneous-isotropic subspace. The (generalized) eigenstates of the reduced operator are eigenstates of the full operator. We discuss the feasibility of numerical diagonalization of the reduced scalar constraint operator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call