Abstract

There is an urgent need for homogeneous immunoassays that offer sufficient sensitivity for routine clinical practice. In this study, we have developed a highly sensitive, fluorescence resonance energy transfer (FRET)-based homogeneous immunoassay. Unlike previous FRET-based homogeneous immunoassays, where acceptors were attached to antibody molecules located far from the donor, we employed acceptors to label the entire sandwich-structured immunocomplex, including two antibodies and one antigen. As a result, the FRET signal was amplified by a factor of 10, owing to the reduced distance between the donor and acceptors. We validated our method by quantifying carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) in PBS buffer and blank plasma. The limits of detection (LOD) for CEA and AFP in both PBS buffer and blank plasma were comparable, reaching sub-femtomolar levels. Furthermore, we successfully quantified CEA and AFP in three human plasma samples, thereby confirming the reliability of our method for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.