Abstract
We consider Riemann–Hilbert boundary value problem with infinite index in unit disk. Its coefficient is Holder-continuous everywhere on the unit circle excluding a finite set of points, where its argument has power discontinuities of order less one. The present article is the first research of this version of Hilbert boundary-value problem with infinite index. We obtain formulas for its general solution, investigate existence ad uniqueness of solutions, and describe the set of solutions in the case of non-uniqueness. Our technique is based on theory of entire functions and geometric theory of functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.