Abstract

The unique structure and exceptionally high lithium ion conductivity over 10mScm-1 of Li10GeP2S12 have gained extensive attention in all-solid-state lithium batteries. However, its poor resistivity to moisture and chemical/electrochemical incompatibility with lithium metal severely impede its practical application. Herein, a fluorine functionalized Li10GeP2S12 is synthesized by stannous fluoride doping and employed as a monolayer solid electrolyte to realize stable all-solid-state lithium batteries. The atomic-scale mechanism underlying the impact of fluorine doping on both moisture and electrochemical stability of Li10GeP2S12 is revealed by density functional theory calculations. Fluorine surface doping significantly reduces surface hydrophilicity by electronic regulation, thereby retarding the hydrolysis reaction of Li10GeP2S12. After exposed to a relative humidity of 35%-40% for 20min, the ionic conductivity of Li9.98Ge0.99Sn0.01P2S11.98F0.02 maintains as high as 2.21mScm-1, nearly one order of magnitude higher than that of Li10GeP2S12 with 0.31mScm-1. Meanwhile, bulk doping of highly electronegative fluorine promotes the formation of lithium vacancies in the Li10GeP2S12 system, thus allowing stable lithium plating/stripping in Li | Li symmetric batteries, boosting a critical current density reaching 2.1mAcm-2. The LiCoO2 | lithium all-solid-state batteries display improved cycling stability and rate capability, showing 80.1% retention after 600 cycles at 1C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.