Abstract

Electrochemically generated anion radicals of aromatic nitriles and esters possess the remarkable property to reduce carbon dioxide to oxalate with negligible formation of carboxylated products. They may thus serve as selective homogeneous catalysts for the reduction of CO2 in an aprotic medium. The catalytic enhancement of the cyclic voltammetric peaks of these catalysts is used to determine the rate constant of the electron transfer from these aromatic anion radicals to CO2 as a function of the catalyst standard potential. Substituted benzoic esters allowed a particularly detailed investigation of the resulting activation-driving force relationship. Using 14 different catalysts in this series made it possible to finely scan a range of reaction standard free energies of 0.4 eV. Detailed analysis of the resulting data leads to the conclusion that the reaction is not a simple outer-sphere electron transfer. It rather consists in a nucleophilic addition of the anion radical on CO2, forming an oxygen (or nit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.