Abstract

We report dynamic Monte Carlo simulations of polymer crystal nucleation initiated by prior spinodal decomposition in polymer solutions. We observed that the kinetic phase diagrams of homogeneous crystal nucleation appear horizontal in the concentration region below their crossovers with the theoretical liquid-liquid spinodal. When the solution was quenched into the temperature beneath this horizontal boundary, the time evolution of structure factors demonstrated the spinodal decomposition at the early stage of crystal nucleation. In comparison with the case without a prior liquid-liquid demixing, we found that the prior spinodal decomposition can regulate the nanoscale small polymer crystallites toward a larger population, more uniform sizes, and a better spatial homogeneity, whereas chain folding in the crystallites seems little affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call