Abstract

The homogeneous cooling state of a granular flow of smooth spherical particles described by the Boltzmann equation is investigated by means of the direct simulation Monte Carlo method. The velocity moments and also the velocity distribution function are obtained and compared with approximate analytical results derived recently. The accuracy of a Maxwell-Boltzmann approximation with a time-dependent temperature is discussed. Besides, the simulations show that the state of uniform density is unstable to long enough wavelength perturbations so that clusters and voids spontaneously form throughout the system. The instability has the characteristic features of the clustering instability which has been observed in molecular dynamics simulations of dense fluids and predicted by hydrodynamic models of granular flows. \textcopyright{}1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.